Question

A prism of refractive index $\sqrt{2}$ has refracting angle 60⁰. In order that a ray suffers minimum deviation it should be incident at an angle:

A 45 ⁰
B 90 ⁰
C 30 ⁰
D none

Solution

Correct option is A)

Given: A prism of refractive index $\sqrt{2}$ has refracting angle 60°.

To find the angle of incidence in order that a ray suffers minimum deviation Solution:

As per the given criteria,

refractive index of the prism, $\mu = \sqrt{2}$

Angle of the prism, A = 60°

For minimum angle of deviation we hav angle of incidence is equal to angle of emergence, i.e., i = e

Hence, $i = \frac{A + \delta_m}{2}$, where δ_m is the

minimum deviation angle.

We know,

$$\mu = \frac{\sin\left(\frac{A+\delta_m}{2}\right)}{\sin\frac{A}{2}}$$

$$\Rightarrow \sqrt{2} = \frac{\sin i}{\sin \frac{60}{2}}$$

$$\Rightarrow$$
 sin i = $\sqrt{2} \times sin(30)$

$$\implies$$
 sin i = $\sqrt{2} \times \frac{1}{2}$

Multiply and divide by $\sqrt{2}$, we get

$$\sin i = \frac{1}{\sqrt{2}}$$
$$\implies i = 45^{\circ}$$

In order that a ray suffers minimum deviation it should be incident at an angle 45°